Thermogravimetric Evaluation of Fungal Degradation of Wood

Abstract

Yellow birch (Betula alleghaniensis Brit.) was degraded by a white rot fungus (Polyporus versicolor L. ex Fr.; now Coriolus versicolor (L.) Quél.) and a brown rot fungus (Poria monticola Murr.; now Poria placenta (Fr.) Cke.) under controlled conditions. Samples of known weight loss from fungi were milled to pass a 40-mesh screen, oven-dried, and then measured for rate of mass loss over selected temperature ranges. Rates of mass loss of nominal 4-mg samples were obtained isothermally in flowing oxygen using a thermo-gravimetric (TG) system containing a Cahn electrobalance. Activation energy (E) was found using zero-order kinetics for the initial mass loss. White-rotted birch (to 60% weight loss) had an E of 35 to 43 kcal/mole over the range of approximately 190 to 210 C. On the basis of TG data, the weight loss from fungal attack could be predicted within about 5%. Brown-rotted birch had more variation in E (30 to 44 kcal/mole), over a temperature range of 170 to 195 C. The rate of mass loss of brown-rotted birch (to 52% weight loss) was more sensitive to temperature because of the known nonlinear decrease in cellulose DP during fungal attack. Dynamic thermogravimetry, a much simpler method, indicated a similar degree of instability from fungal attack as did the isothermal tests. TG appears to be a viable research method to evaluate fungal attack of wood

    Similar works