Cure of Phenol-Formaldehyde Adhesive in the Presence of CCA-Treated Wood by Differential Scanning Calorimetry

Abstract

Chromated copper arsenate (CCA) preservatives interfere with bond formation of phenolic-based adhesives on CCA-treated southern pine. Ions of chromium (Cr+3) and copper (Cu+2) are known to complex with phenol and formaldehyde, affecting the rate of cure of the resin. Differential scanning calorimetry (DSC) was used to thermally analyze the cure of a commercial phenol-formaldehyde adhesive in the presence or CCA-treated wood, solutions of CCA preservative, and solutions of model compounds containing ions of Cr+6, Cr+3, Cu+2, and As+5. The DSC thermograms indicated that free metallic ions in solution can accelerate the cure of a portion of the adhesive at less than normal temperatures. However, when the CCA preservative was chemically "fixed" within the southern pine wood, accelerated cure of the adhesive did not occur

    Similar works