Acoustic Sorting Models for Improved Log Segregation

Abstract

In this study, we examined three individual log measures (acoustic velocity, log diameter, and log vertical position in a tree) for their ability to predict average modulus of elasticity (MOE) and grade yield of structural lumber obtained from Douglas-fir (Pseudotsuga menziesii [Mirb. Franco]) logs. We found that log acoustic velocity only had a moderate correlation with average MOE of the lumber produced from the logs (R2 = 0.40). Log diameter had a weak correlation with average lumber MOE (R2 = 0.12). Log vertical position in a tree was found to have a relatively good relationship with lumber MOE (R2 = 0.57). Our analysis also indicated that the combinations of log acoustic velocity and log diameter or log acoustic velocity and log position were better predictors of average lumber MOE and lumber visual grade yield than log acoustic velocity alone. For sorting best quality logs, multivariable models were more effective than the velocity-alone model; however, for sorting poorest quality logs, the velocity-alone model was as effective as multivariable models

    Similar works