Cell-Wall Mechanical Properties of Bamboo Investigated by In-Situ Imaging Nanoindentation

Abstract

A novel in-situ imaging nanoindentation technique was used to investigate the cell-wall mechanical properties of bamboo fibers and parenchyma cells. In-situ imaging confirmed neither "piling up" nor "sinking in" occurred around the indentations in the cell walls. The load-displacement curves revealed different deformation mechanisms of the cell walls when indented, respectively, in the longitudinal and transverse direction of bamboo fibers. There existed significant differences in MOE between longitudinal (16.1 GPa) and transverse direction (5.91 GPa) for the cell walls of bamboo fibers, while no differences were significant in hardness. Furthermore, the measured longitudinal MOE and hardness of parenchyma cell walls were 5.8 GPa and 0.23 GPa. This corresponds to 33% and 63% of the corresponding value of bamboo fibers. It was found that the longitudinal MOE of the cells of bamboo fibers remained almost constant from the outer portion to the inner portion of bamboo culms, while hardness showed a decreasing tendency. It was concluded that the nanoindentation technique was capable of effectively characterizing the mechanical properties of bamboo at the cellular level, though it might underestimate the real longitudinal MOE of the cell walls. The results highlighted the extreme importance of locating indentations at the nano scale for the mechanical characterization of complicated natural biomaterials such as wood and bamboo

    Similar works