We study spatial soliton dynamics in nano-particle suspensions. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these systems the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. The possibility of synthesizing artificial nonlinearities using mixtures of nanosuspensions is also considered