Macroscopic\u27\u27 quantum superpositions: Atom-field entangled and steady states by two-photon processes

Abstract

The dynamics of an exact two-photon Hamiltonian is used to study the time evolution of an initially disentangled pure state of the atom-field system as it goes through cycles of entanglement separated by instances of disentanglement. For specific initial states of the electromagnetic field, the output state is a pure quantum superposition of a squeezed vacuum state and an orthogonal, odd-photon-number state. The odd-photon-number state, which is not a squeezed state, exhibits both nonclassical sub-Poissonian and classical super-Poissonian photon statistics. In the latter case the quantum superposition resembles a macroscopic superposition state. Conditions are obtained on the atom-cavity interaction time for such states to represent the steady states in the injection in a high-Q cavity of a monoenergetic, low-density beam of three-level atoms in a coherent state

    Similar works