research

Wada Dessins associated with Finite Projective Spaces and Frobenius Compatibility

Abstract

\textit{Dessins d'enfants} (hypermaps) are useful to describe algebraic properties of the Riemann surfaces they are embedded in. In general, it is not easy to describe algebraic properties of the surface of the embedding starting from the combinatorial properties of an embedded dessin. However, this task becomes easier if the dessin has a large automorphism group. In this paper we consider a special type of dessins, so-called \textit{Wada dessins}. Their underlying graph illustrates the incidence structure of finite projective spaces \PR{m}{n}. Usually, the automorphism group of these dessins is a cyclic \textit{Singer group} Σℓ\Sigma_\ell permuting transitively the vertices. However, in some cases, a second group of automorphisms Φf\Phi_f exists. It is a cyclic group generated by the \textit{Frobenius automorphism}. We show under what conditions Φf\Phi_f is a group of automorphisms acting freely on the edges of the considered dessins.Comment: 23 page

    Similar works

    Full text

    thumbnail-image

    Available Versions