The first-principle approach to the dense state of QCD matter, i.e. the
lattice-QCD simulation at finite baryon density, is not under theoretical
control for the moment. The effective model study based on QCD symmetries is a
practical alternative. However the model parameters that are fixed by hadronic
properties in the vacuum may have unknown dependence on the baryon chemical
potential. We propose a new prescription to constrain the effective model
parameters by the matching condition with the thermal Statistical Model. In the
transitional region where thermal quantities blow up in the Statistical Model,
deconfined quarks and gluons should smoothly take over the relevant degrees of
freedom from hadrons and resonances. We use the Polyakov-loop coupled
Nambu--Jona-Lasinio (PNJL) model as an effective description in the quark side
and show how the matching condition is satisfied by a simple ansatz on the
Polyakov loop potential. Our results favor a phase diagram with the chiral
phase transition located at slightly higher temperature than deconfinement
which stays close to the chemical freeze-out points.Comment: 8 pages, 4 figures; Talk at International Workshop on High Density
Nuclear Matter, Cape Town, South Africa, April 6-9, 201