Differential gene expression between androgen-dependent (LNCaP-FGC) and
androgen-independent (LNCaP-LNO) prostate cancer cells has been
investigated using RNA arbitrarily primed and differential display PCR of
mRNA. Four differentially expressed cDNA transcripts were identified, of
which differential expression was confirmed by Northern blot analysis.
Sequence analysis revealed two unknown (JC19 and GC79) and two known genes
[B-cell translocation gene 1 and UDP-glucuronosyltransferase 2B15
(UGT2B15)]. JC19, GC79, and B-cell translocation gene 1 were more highly
expressed in LNCaP-FGC cells compared with LNCaP-LNO cells, whereas
UGT2B15 was only expressed in LNCaP-LNO cells. Androgens and
1,25-dihydroxyvitamin D3 were able to down-regulate UGT2B15 mRNA in
LNCaP-LNO cells. For GC79 mRNA, down-regulation was only observed with
androgens in LNCaP-FGC cells. Expression of JC19 mRNA was studied using a
panel of human prostate cancer xenografts. In androgen-dependent
xenografts, expression of JC19 mRNA was much higher compared with
androgen-independent xenografts, in which significant expression was
hardly detectable. The mRNA expression pattern in the xenografts is in
good agreement with that observed in the cell culture system. In
conclusion, the differential display technique used in the present study
allows analysis of gene expression in vitro and in vivo and can be used
for the identification of important genes involved in androgen-independent
prostate cancer development