Tutorial Dialog in an Equation Solving Intelligent Tutoring System

Abstract

This thesis makes a contribution to Intelligent Tutoring Systems (ITS) architectures. A new intelligent tutoring system is presented for the domain of solving linear equations. This system is novel, because it is the first intelligent equation-solving tutor that combines a cognitive model of the domain with a model of dialog-based tutoring. The tutorial model is novel because it is based on the observation of an experienced human tutor and captures tutorial strategies specific to the domain of equation-solving. In this context, a tutorial dialog is the equivalent of breaking down problems into simpler steps and then asking new questions to the student before proceeding to the next navigational step. The resulting system, named E-tutor, was compared, via a randomized controlled experiment, to an algebra ITS similar to the“Cognitive Tutor by Carnegie Learning, Inc®. The Cognitive Tutor can provide traditional model-tracing feedback and buggy messages to students, but does not engage students in dialog. Preliminary results using a very small sample size, i.e., teaching equation solving to 15 high school students, showed that E-Tutor with dialog capabilities performed better than E-tutor without dialog. This result showed an effect size of 0.4 standard deviations for overall learning by condition. This set of preliminary results, though not statistically significant, shows promising opportunities to improve learning performance by adding tutorial dialog capabilities to ITSs. However, significant further validation is required, specifically, adding greater numbers and variations of the work to our sample size, before this approach can be deemed successful. The system is available at www.wpi.edu/~leenar/E-tutor

    Similar works