This paper presents a passive wireless polymer-derived silicon carbonitride (SiCN) ceramic sensor based on cavity radio frequency resonator together with integrated slot antenna. The effect of the cavity sensor dimensions on the Q-factor and resonant frequency is investigated by numerical simulation. A sensor with optimal dimensions is designed and fabricated. It is demonstrated that the sensor signal can be wirelessly detected at distances up to 20 mm. Given the high-temperature stability of the SiCN, the sensor is very promising for high-temperature wireless sensing applications