Single glass substrate liquid crystal device using electric field-enforced phase separation and photoinduced polymerization

Abstract

An in-plane switching liquid crystal (LC) cell using a glass substrate and a photoinduced polymer layer is demonstrated. The fabrication process is based on the electrodynamics of dielectric fluids. When the fringing field is present, the LC molecules tend to aggregate in the strong electric field regions while the monomers diffuse to the weak field regions. After photopolymerization, the LC molecules are confined by a thin polymer layer and polymer walls which define the cell gap. This approach enables single-substrate large panel display devices to be fabricated

    Similar works