We explore a class of dielectrically loaded metallic waveguides capable of supporting negative index modes in the far infrared and terahertz regime. Principles of operation, modal structure and appropriate coupling schemes are analytically and numerically investigated. The extreme simplicity of the proposed design, along with the non-conventional and counter intuitive electromagnetic properties of this family of waveguides, makes these structures excellent candidates for the practical realization of negative index far infrared and terahertz devices with new and interesting functionalities. Generalizations and extensions of the suggested design are also discussed