A promising technique for measuring single electron spins is magnetic
resonance force microscopy (MRFM), in which a microcantilever with a permanent
magnetic tip is resonantly driven by a single oscillating spin. If the quality
factor of the cantilever is high enough, this signal will be amplified over
time to the point that it can be detected by optical or other techniques. An
important requirement, however, is that this measurement process occur on a
time scale short compared to any noise which disturbs the orientation of the
measured spin. We describe a model of spin noise for the MRFM system, and show
how this noise is transformed to become time-dependent in going to the usual
rotating frame. We simplify the description of the cantilever-spin system by
approximating the cantilever wavefunction as a Gaussian wavepacket, and show
that the resulting approximation closely matches the full quantum behavior. We
then examine the problem of detecting the signal for a cantilever with thermal
noise and spin with spin noise, deriving a condition for this to be a useful
measurement.Comment: 12 pages, 8 figures in EPS format, RevTeX 4.