Seawinds Radiometer Brightness Temperature Calibration And Validation

Abstract

The NASA SeaWinds scatterometer is a radar remote sensor which operates on two satellites; NASA\u27s QuikSCAT launched in June 1999 and on Japan\u27s ADEOS-II satellite launched in December 2002. The purpose of SeaWinds is to provide global measurements of the ocean surface wind vector. On QuikSCAT, a ground data processing algorithm was developed, which allowed the instrument to function as a QuikSCAT Radiometer (QRad) and measure the ocean microwave emissions (brightness temperature, Tb) simultaneously with the backscattered power. When SeaWinds on ADEOS was launched, this same algorithm was applied, but the results were anomalous. The initial SRad brightness temperatures exhibited significant, unexpected, ascending/descending orbit Tb biases. This thesis presents an empirical correction algorithm to correct the anomalous SeaWinds Radiometer (SRad) ocean brightness temperature measurements. I use the Advanced Microwave Scanning Radiometer (AMSR) as a brightness temperature standard to calibrate and then, with independent measurements, validate the corrected SRad Tb measurements. AMSR is a well-calibrated multi-frequency, dual-polarized microwave radiometer that also operates on ADEOS-II. These results demonstrate that, after tuning the Tb algorithm, good quality SRad brightness temperature measurements are obtained over the oceans

    Similar works