research

Dynamics of the (spin-) Hall effect in topological insulators and graphene

Abstract

A single two-dimensional Dirac cone with a mass gap produces a quantized (spin-) Hall step in the absence of magnetic field. What happens in strong electric fields? This question is investigated by analyzing time evolution and dynamics of the (spin-) Hall effect. After switching on a longitudinal electric field, a stationary Hall current is reached through damped oscillations. The Hall conductivity remains quantized as long as the electric field (E) is too weak to induce Landau-Zener transitions, but quantization breaks down for strong fields and the conductivity decreases as 1/sqrt{E}. These apply to the (spin-) Hall conductivity of graphene and the Hall and magnetoelectric response of topological insulators.Comment: 4 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions