research

Apolarity, Hessian and Macaulay polynomials

Abstract

A result by Macaulay states that an Artinian graded Gorenstein ring R of socle dimension one and socle degree b can be realized as the apolar ring of a homogeneous polynomial f of degree b. If R is the Jacobian ring of a smooth hypersurface g=0, then b is just equal to the degree of the Hessian polynomial of g. In this paper we investigate the relationship between f and the Hessian polynomial of g.Comment: 12 pages. Improved exposition, minor correction

    Similar works