A result by Macaulay states that an Artinian graded Gorenstein ring R of
socle dimension one and socle degree b can be realized as the apolar ring of a
homogeneous polynomial f of degree b. If R is the Jacobian ring of a smooth
hypersurface g=0, then b is just equal to the degree of the Hessian polynomial
of g. In this paper we investigate the relationship between f and the Hessian
polynomial of g.Comment: 12 pages. Improved exposition, minor correction