research

The effect of increased microporosity on bone formation within silicate-substituted scaffolds in an ovine posterolateral spinal fusion model

Abstract

This study compared the bone forming capacity of the same formulation of silicate-substituted bone graft substitute materials with different microporosity in an instrumented posterolateral spinal fusion ovine model. Materials with a strut porosity of (i) 22.5% (SiCaP) or (ii) 36.0% (SiCaP(+)) were packed along either side of the spine. Bone apposition rates, % new bone formation, % bone-implant contact, and % graft resorption were quantified at 8, 12, and 24 weeks post surgery. Computed Tomography (CT) was used to grade the formation of fusion bridges between vertebrae. Results showed no significant difference in bone apposition rates, % new bone formation, and % bone-implant contact when the two materials were compared. However, at 8 weeks, a significantly higher CT score was obtained in the SiCaP(+) group (0.83±0.17) when compared with the SiCaP group (0.17±0.17; p=0.027). Significantly less scaffold remained in the SiCaP(+) group at 12 weeks (p=0.018). Both SiCaP and SiCaP(+) formulations augmented bone formation. Increasing the strut porosity did not significantly increase bone formation however, at 8 weeks it promoted the formation of more highly mineralized bone resulting in a significantly higher CT score, suggesting the bone tissue formed was more mature

    Similar works