CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Asymptotics of conduction velocity restitution in models of electrical excitation in the heart.
Authors
V. N. Biktashev
R. D. Simitev
Publication date
20 March 2013
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Copyright © Springer 2011Journal ArticleThe original publication is available at www.springerlink.com - http://link.springer.com/article/10.1007/s11538-010-9523-6We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh-Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified "caricature" of Noble (J. Physiol. Lond. 160:317-352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177-210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler-Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Open Research Exeter
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ore.exeter.ac.uk:10036/381...
Last time updated on 06/08/2013