research

The number of independent sets in a graph with small maximum degree

Abstract

Let ind(G){\rm ind}(G) be the number of independent sets in a graph GG. We show that if GG has maximum degree at most 55 then ind(G)2iso(G)uvE(G)ind(Kd(u),d(v))1d(u)d(v) {\rm ind}(G) \leq 2^{{\rm iso}(G)} \prod_{uv \in E(G)} {\rm ind}(K_{d(u),d(v)})^{\frac{1}{d(u)d(v)}} (where d()d(\cdot) is vertex degree, iso(G){\rm iso}(G) is the number of isolated vertices in GG and Ka,bK_{a,b} is the complete bipartite graph with aa vertices in one partition class and bb in the other), with equality if and only if each connected component of GG is either a complete bipartite graph or a single vertex. This bound (for all GG) was conjectured by Kahn. A corollary of our result is that if GG is dd-regular with 1d51 \leq d \leq 5 then ind(G)(2d+11)V(G)2d, {\rm ind}(G) \leq \left(2^{d+1}-1\right)^\frac{|V(G)|}{2d}, with equality if and only if GG is a disjoint union of V(G)/2dV(G)/2d copies of Kd,dK_{d,d}. This bound (for all dd) was conjectured by Alon and Kahn and recently proved for all dd by the second author, without the characterization of the extreme cases. Our proof involves a reduction to a finite search. For graphs with maximum degree at most 33 the search could be done by hand, but for the case of maximum degree 44 or 55, a computer is needed.Comment: Article will appear in {\em Graphs and Combinatorics

    Similar works

    Full text

    thumbnail-image

    Available Versions