CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Induced currents in the quantum Hall regime: energy storage, persistence, and I-V characteristics
Authors
A. Kam
A.S. Sachrajda
+5 more
A.V. Shytov
Martin J. Smith
Charles D.H. Usher
Z.R. Wasilewski
Charles D.H. Williams
Publication date
4 October 2013
Publisher
'American Physical Society (APS)'
Doi
Cite
Abstract
Copyright © 2012 American Physical SocietyInduced currents associated with the quantum Hall effect are studied in the temperature range 39 mK to 1.6 K, and at Landau-level filling factors ν=1,2,3,4, and 6, using torsion-balance magnetometry. A quantitative link is demonstrated between (nonlinear induced current) vs (inducing electromotive force) curves, and the subexponential decay of the induced current in a static magnetic field. The energy storage in the induced currents is reexamined with the conclusion that the predominant mechanism for storage is inductive, through the mutual inductance between the sample and the magnet, not capacitive as previous reports have assumed. The temperature dependencies of the currents are consistent with previous models, except for a low-temperature saturation at filling factors ν=1 and ν=2, which we attribute to electron heating
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Open Research Exeter
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ore.exeter.ac.uk:10871/137...
Last time updated on 07/10/2013