research

An Examination of the Feasibility of Linear Deterministic Sea Wave Prediction in Multi-Directional Seas Using Wave Profiling Radar: Theory, Simulation and Sea Trials

Abstract

This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.For a number of maritime tasks there is a short time period, typically only a few tens of seconds, where a critical event occurs which defines a limiting wave height for the whole operation. Examples are the recovery of fixed and rotary winged aircraft, cargo transfers, final pipe mating in fluid transfer operations and launch/recovery of small craft. The recovery of a 30 ton rescue submersible onto a mother ship in the NATO Submarine Rescue System is a prime example. In such applications short term Deterministic Sea Wave Prediction (DSWP) can play a vital role in extending the sea states under which the system can be safely deployed. DSWP also has great potential in conducting experimental sea wave research at full scale. This report explores the feasibility of using data from an experimental wave profiling radar in achieving DSWP. The report includes theory, simulation and field testing. Two forms of DSWP are employed, a fixed point system based upon a restricted set of wave directions, from which we obtain some success, and the other a fully two dimensional technique, which requires further development. The main finding is that using wave profiling radar for DSWP offers promise but requires improvements both to the spatial reliability and resolution of the wave profiling radar, and to the temporal resolution of its sweep before the technique can be considered to be viable as a usable tool.The authors acknowledge funding from the European Union FP7 and U.K. Ministry of Defence NSRS projects

    Similar works