CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks
Authors
A Anav
VK Arora
+5 more
P Friedlingstein
Chris D. Jones
R Knutti
SK Liddicoat
M Meinshausen
Publication date
4 February 2016
Publisher
'American Meteorological Society'
Doi
Cite
Abstract
Final published version of article.© 2014 American Meteorological SocietyIn the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5 simulations.When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97ppm by 2100) and hence higher radiative forcing (by 0.25Wm-2) when driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these models already overestimate the present-day CO2, with the present-day biases reasonably well correlated with future atmospheric concentrations' departure from the prescribed concentration. The uncertainty in CO2 projections is mainly attributable to uncertainties in the response of the land carbon cycle. As a result of simulated higher CO2 concentrations than in the concentration-driven simulations, temperature projections are generally higher when ESMs are driven with CO2 emissions. Global surface temperature change by 2100 (relative to present day) increased by 3.9° ± 0.9°C for the emission-driven simulations compared to 3.7° ± 0.7°C in the concentration-driven simulations. Although the lower ends are comparable in both sets of simulations, the highest climate projections are significantly warmer in the emission-driven simulations because of stronger carbon cycle feedbacks. © 2014 American Meteorological Society.Department for Environment, Food and Rural Affairs (DEFRA)Department of Energy & Climate Change (DECC
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Open Research Exeter
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ore.exeter.ac.uk:10871/196...
Last time updated on 03/08/2016