We study theoretically dynamic response of a mesoscopic capacitor, which
consists of a quantum dot connected to an electron reservoir via a point
contact and capacitively coupled to a gate voltage. A quantum Hall edge state
with a filling factor nu is realized in a strong magnetic field applied
perpendicular to the two-dimensional electron gas. We discuss a noise-driven
quantum phase transition of the transport property of the edge state by taking
into account an ohmic bath connected to the gate voltage. Without the noise,
the charge relaxation for nu>1/2 is universally quantized at R_q=h/(2e^2),
while for nu<1/2, the system undergoes the Kosterlitz-Thouless transtion, which
drastically changes the nature of the dynamical resistance. The phase
transition is facilitated by the noisy gate voltage, and we see that it can
occur even for an integer quantum Hall edge at nu=1. When the dissipation by
the noise is sufficiently small, the quantized value of R_q is shifted by the
bath impedance.Comment: 5 pages, 2 figures, proceeding of the 19th International Conference
on the Application of High Magnetic Fields in Semiconductor Physics and
Nanotechnology (HMF-19