Computationally Inexpensive Sequential Forward Floating Selection for Acquiring Significant Features for Authorship Invarianceness in Writer Identification

Abstract

Handwriting is individualistic. The uniqueness of shape and style of handwriting can be used to identify the significant features in authenticating the author of writing. Acquiring these significant features leads to an important research in Writer Identification domain where to find the unique features of individual which also known as Individuality of Handwriting. This paper proposes an improved Sequential Forward Floating Selection method besides the exploration of significant features for invarianceness of authorship from global shape features by using various wrapper feature selection methods. The promising results show that the proposed method is worth to receive further exploration in identifying the handwritten authorship

    Similar works