The Electrocatalytic Oxidation of Ethylene and Methane, and Reduction of Oxygen on Gas-Diffusion Electrodes Made of Amorphous Nickel-Valve Metal-Platinum Group Metal Alloys

Abstract

Exploratory work has been done on the performance of electrocatalytic reduction of oxygen and anodic oxidation of ethylene and methane on the gas-diffusion electrodes prepared from amorphous alloys containing one atomic percent platinum group elements. Gas-diffusion electrodes were made by coating the mixture of catalysts prepared by immersion in 46% HF from melt-spun ribbon shaped amorphous alloys, carbon black, polytetrafluoroethylene and sugar, and subsequent baking in nitrogen gas. The electrode made of catalyst prepared from amorphous nickel-niobium alloy containing platinum and ruthenium was the most active for electrocatalytic reduction of oxygen. For electro-oxidation of ethylene and methane, amorphous nickel-value metal alloy containing only platinum possesses higher activity in comparison to the electrode made of platinum black powder

    Similar works