research

Phase shifts and phase π\pi-jumps in four-terminal waveguide Aharonov-Bohm interferometers

Abstract

Quantum coherent properties of electrons can be studied in Aharonov-Bohm (AB) interferometers. We investigate both experimentally and theoretically the transmission phase evolution in a four-terminal quasi-one-dimensional AlGaAs/GaAs-based waveguide AB ring. As main control parameter besides the magnetic field, we tune the Fermi wave number along the pathways using a top-gate. Our experimental results and theoretical calculations demonstrate the strong influence of the measurement configuration upon the AB-resistance-oscillation phase in a four-terminal device. While the non-local setup displays continuous phase shifts of the AB oscillations, the phase remains rigid in the local voltage-probe setup. Abrupt phase jumps are found in all measurement configurations. We analyze the phase shifts as functions of the magnetic field and the Fermi energy and provide a detailed theoretical model of the device. Scattering and reflections in the arms of the ring are the source of abrupt phase jumps by π\pi.Comment: 8 pages, 5 figure

    Similar works