research

Synthesis, Structure, and Properties of Compounds in the NaHSO_4−CsHSO_4 System. 1. Crystal Structures of Cs_2Na(HSO_4)_3 and CsNa_2(HSO_4_)3

Abstract

Exploratory synthesis in the NaHSO₄-CsHSO₄ system, aimed at discovering novel proton conducting solids, resulted in the new compounds CsNa₂(HSO₄)₃ and Cs₂Na(HSO₄)₃. Single-crystal X-ray diffraction (performed at room temperature) revealed CsNa₂(HSO₄)₃ to crystallize in the cubic space group P2₁3 with lattice parameters a=10.568(2)Å and Z=4, whereas CS2Na(HSO₄)₃, studied by both single-crystal neutron and X-ray methods, crystallizes in the hexagonal space group P6₃/m. The latter compound has lattice parameters a=8.5712(17) and c=9.980(2)Å, and Z=2. The unit cell volumes are 1180.4(4) and 634.9(2)ų, respectively, giving calculated densities of 2.645 and 3.304 mg m⁻³. Refinement using all observed reflections yielded a weighted residual, R-w(F²), of 0.0515 based on F² X-ray values for CsNa₂(HSO₄)₃. For Cs₂Na(HSO₄)₃ the analogous X-ray and neutron values were 0.0483 and 0.1715, respectively. Both structures contain a single, crystallographically distinct, asymmetric hydrogen bond (as confirmed by NMR investigations) and unique, three-membered (HSO₄)₃ rings. The geometric match between the NaO₆ octahedra and the rings suggests the sodium polyhedra may serve to template the (HSO₄)₃ unit. In CsNa₂(HSO₄)₃ the rings form a distorted cubic close-packed array. The Cs atoms are located within the "octahedral" sites of this array, and the Na atoms, within the "tetrahedral" sites. The rings in CS₂Na(HSO₄)₃ are linked together by NaO6 octahedra to form infinite Na(HSO₄)₃ chains that extend along 001. The hexagonal compound exhibits disorder about the sulfate tetrahedron that suggests a P6₃/m → P6 phase transition may occur upon cooling

    Similar works