Biological networks of interacting agents exhibit similar topological
properties for a wide range of scales, from cellular to ecological levels,
suggesting the existence of a common evolutionary origin. A general
evolutionary mechanism based on global stability has been proposed recently [J
I Perotti, O V Billoni, F A Tamarit, D R Chialvo, S A Cannas, Phys. Rev. Lett.
103, 108701 (2009)]. This mechanism is incorporated into a model of a growing
network of interacting agents in which each new agent's membership in the
network is determined by the agent's effect on the network's global stability.
We show that, out of this stability constraint, several topological properties
observed in biological networks emerge in a self organized manner. The
influence of the stability selection mechanism on the dynamics associated to
the resulting network is analyzed as well.Comment: 10 pages, 9 figure