research

Nambu-Jona-Lasinio model description of weakly interacting Bose condensate and BEC-BCS crossover in dense QCD-like theories

Abstract

QCD-like theories possess a positively definite fermion determinant at finite baryon chemical potential μB\mu_{\text B} and the lattice simulation can be successfully performed. While the chiral perturbation theories are sufficient to describe the Bose condensate at low density, to describe the crossover from Bose-Einstein condensation (BEC) to BCS superfluidity at moderate density we should use some fermionic effective model of QCD, such as the Nambu-Jona-Lasinio model. In this paper, using two-color two-flavor QCD as an example, we examine how the Nambu-Jona-Lasinio model describes the weakly interacting Bose condensate at low density and the BEC-BCS crossover at moderate density. Near the quantum phase transition point μB=mπ\mu_{\text B}=m_\pi (mπm_\pi is the mass of pion/diquark multiplet), the Ginzburg-Landau free energy at the mean-field level can be reduced to the Gross-Pitaevskii free energy describing a weakly repulsive Bose condensate with a diquark-diquark scattering length identical to that predicted by the chiral perturbation theories. The Goldstone mode recovers the Bogoliubov excitation in weakly interacting Bose condensates. The results of in-medium chiral and diquark condensates predicted by chiral perturbation theories are analytically recovered. The BEC-BCS crossover and meson Mott transition at moderate baryon chemical potential as well as the beyond-mean-field corrections are studied. Part of our results can also be applied to real QCD at finite baryon or isospin chemical potential.Comment: 29 pages + 9 figures. Published version in PR

    Similar works

    Full text

    thumbnail-image

    Available Versions