We analyze the structure and connectivity of the distinct morphologies that
define the Cosmic Web. With the help of our Multiscale Morphology Filter (MMF),
we dissect the matter distribution of a cosmological ΛCDM N-body
computer simulation into cluster, filaments and walls. The MMF is ideally
suited to adress both the anisotropic morphological character of filaments and
sheets, as well as the multiscale nature of the hierarchically evolved cosmic
matter distribution. The results of our study may be summarized as follows:
i).- While all morphologies occupy a roughly well defined range in density,
this alone is not sufficient to differentiate between them given their overlap.
Environment defined only in terms of density fails to incorporate the intrinsic
dynamics of each morphology. This plays an important role in both linear and
non linear interactions between haloes. ii).- Most of the mass in the Universe
is concentrated in filaments, narrowly followed by clusters. In terms of
volume, clusters only represent a minute fraction, and filaments not more than
9%. Walls are relatively inconspicous in terms of mass and volume. iii).- On
average, massive clusters are connected to more filaments than low mass
clusters. Clusters with M∼1014 M⊙ h−1 have on average
two connecting filaments, while clusters with M≥1015 M⊙
h−1 have on average five connecting filaments. iv).- Density profiles
indicate that the typical width of filaments is 2\Mpch. Walls have less well
defined boundaries with widths between 5-8 Mpc h−1. In their interior,
filaments have a power-law density profile with slope γ≈−1,
corresponding to an isothermal density profile.Comment: 28 pages, 22 figures, accepted for publication in MNRAS. For a
high-res version see http://www.astro.rug.nl/~weygaert/webmorph_mmf.pd