An array of 42 mum square, 3 mum thick garnet particles has been studied. The strong crystalline uniaxial anisotropy of these particles results in the stable remanent state being single domain with magnetization parallel to the film normal. Magneto-optic measurements of individual particles provide distribution statistics for the easy-axis switching field H-sw, and the in-plane hard-axis effective anisotropy field, H-eff, which induces the formation of a metastable stripe domain structure. Both H-sw and H-eff are much smaller than the crystalline anisotropy field. Micromagnetic simulations show that the small H-sw cannot be attributed to shape anisotropy, but is consistent with smooth, localized reductions in the crystalline anisotropy caused by defects in either the particles or the substrate