research

On the number of zeros of Melnikov functions

Abstract

We provide an effective uniform upper bond for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order kk of the Melnikov function. The generic case k=1k=1 was considered by Binyamini, Novikov and Yakovenko (\cite{BNY-Inf16}). The bound follows from an effective construction of the Gauss-Manin connection for iterated integrals

    Similar works