Deciphering glioma intrinsic transcriptional subtypes identifies tumor evolution associates with changes in immune-microenvironment

Abstract

Glioblastoma expression subtypes have been previously been associated with genomic abnormalities, treatment response, and differences in tumor microenvironment. We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical, a revision of the previously reported TCGA subtypes. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and the presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Comparison of matching primary and recurrent gliomas elucidated treatment-induced phenotypic tumor evolution, including expression subtype switching, in 45% of our cohort as well as associations between microenvironmental components and treatment response. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence was associated with CD8+ T cell enrichment. Frequency of M2 macrophage detection was associated with short-term relapse after radiation therapy. Our study provides a comprehensive transcriptional and cellular landscape of IDH wild-type glioblastoma during treatment modulated tumor evolution. Characterization of the evolving glioblastoma transcriptome and tumor microenvironment aids in designing more effective immunotherapy trials

    Similar works