A common survival strategy of microorganisms subjected to stress involves the
generation of phenotypic heterogeneity in the isogenic microbial population
enabling a subset of the population to survive under stress. In a recent study,
a mycobacterial population of M. smegmatis was shown to develop phenotypic
heterogeneity under nutrient depletion. The observed heterogeneity is in the
form of a bimodal distribution of the expression levels of the Green
Fluorescent Protein (GFP) as reporter with the gfp fused to the promoter of the
rel gene. The stringent response pathway is initiated in the subpopulation with
high rel activity.In the present study, we characterize quantitatively the
single cell promoter activity of the three key genes, namely, mprA, sigE and
rel, in the stringent response pathway with gfp as the reporter. The origin of
bimodality in the GFP distribution lies in two stable expression states, i.e.,
bistability. We develop a theoretical model to study the dynamics of the
stringent response pathway. The model incorporates a recently proposed
mechanism of bistability based on positive feedback and cell growth retardation
due to protein synthesis. Based on flow cytometry data, we establish that the
distribution of GFP levels in the mycobacterial population at any point of time
is a linear superposition of two invariant distributions, one Gaussian and the
other lognormal, with only the coefficients in the linear combination depending
on time. This allows us to use a binning algorithm and determine the time
variation of the mean protein level, the fraction of cells in a subpopulation
and also the coefficient of variation, a measure of gene expression noise.The
results of the theoretical model along with a comprehensive analysis of the
flow cytometry data provide definitive evidence for the coexistence of two
subpopulations with overlapping protein distributions.Comment: 24 pages,8 figures, supplementary information and 5 supplementary
figure