An amalgam of inverse semigroups [S,T,U] is full if U contains all of the
idempotents of S and T. We show that for a full amalgam [S,T,U], the C*-algebra
of the inverse semigroup amaglam of S and T over U is the C*-algebraic amalgam
of C*(S) and C*(T) over C*(U). Using this result, we describe certain
amalgamated free products of C*-algebras, including finite-dimensional
C*-algebras, the Toeplitz algebra, and the Toeplitz C*-algebras of graphs