We provide some general theoretical results to guide the optimization of
transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on
the canonical micro- and nanofluidic geometry of a parallel-plate channel with
an arbitrary two-component (low-slip and high-slip) coarse texture, varying on
scales larger than the channel thickness. By analyzing rigorous bounds on the
permeability, over all possible patterns, we optimize the area fractions, slip
lengths, geometry and orientation of the surface texture to maximize transverse
flow. In the case of two aligned striped surfaces, very strong transverse flows
are possible. Optimized superhydrophobic surfaces may find applications in
passive microfluidic mixing and amplification of transverse electrokinetic
phenomena.Comment: 4 page