research

Deformed Kazhdan-Lusztig elements and Macdonald polynomials

Abstract

We introduce deformations of Kazhdan-Lusztig elements and specialised nonsymmetric Macdonald polynomials, both of which form a distinguished basis of the polynomial representation of a maximal parabolic subalgebra of the Hecke algebra. We give explicit integral formula for these polynomials, and explicitly describe the transition matrices between classes of polynomials. We further develop a combinatorial interpretation of homogeneous evaluations using an expansion in terms of Schubert polynomials in the deformation parameters.Comment: major revision, 29 pages, 22 eps figure

    Similar works