We consider the recovery of real-valued bandlimited functions from the
absolute values of their samples, possibly spaced nonuniformly. We show that
such a reconstruction is always possible if the function is sampled at more
than twice its Nyquist rate, and may not necessarily be possible if the samples
are taken at less than twice the Nyquist rate. In the case of uniform samples,
we also describe an FFT-based algorithm to perform the reconstruction. We prove
that it converges exponentially rapidly in the number of samples used and
examine its numerical behavior on some test cases