thesis

Pyramid wavefront sensors for astronomy and for the human eye

Abstract

WaveFront Sensors (WFSs) may be defined as the heart of an adaptive optics system since they analyze the radiation coming from reference sources and allow to quantify the distortion of a wavefront. Among the varieties of existing WFSs, my PhD research thesis focuses especially on innovative optical systems taking advantage of the peculiarities of the Pyramid WFS. In my PhD project I have designed, implemented, characterized or studied three different applications characterized by the fact that one or multiple pyramid WFSs play a major role. They extend from WATERFALL, an application for the human eye (8 mm), to a Very-Linear (and very sensitive) WFS (VL-WFS), part of a concept for a 40 meter telescope adaptive optics, passing through a very complex system featuring more than 100 degrees of freedom, to be mounted on 8.4 m x 2 LBT telescope (Ground-layer WFS for LINC-NIRVANA). WATERFALL concerns the design and successful realization of a prototype for opthalmologic application for industrial commercialization to measure dioptric power of Intra-Ocular Lenses. GWS for NIRVANA works includes the definition of tolerances to be met and the detailed description of its alignment, integration phase and successful verification, leading it toward its on-sky commissioning phase in the Pathfinder experiment. The VL-WFS is in its very early phase, concepts and new ideas (mostly coming from our group) have to be organized in order to make a real proposal of a Global MCAO instrument for the E-ELT. The projects briefly presented are all based on the same optical concepts and if the ophthalmology application might at first sight look unrelated to astronomy, it is, in fact, representing a simple SCAO system applied to an optical system which is the eye, proving how the interaction between different research field can lead to successful results

    Similar works