Radiation protection of aircraft crew: publicly available database of measurements with the silicon spectrometer Liulin on board aircraft

Abstract

Annual effective doses of aircrew from occupational exposure are typically up to 6 mSv, depending on the number of flight hours, route locations, and solar activity. In many cases, these doses exceed the limit for public exposure to ionizing radiation and thus ICRP recommended their monitoring. Radiation fields at aircraftaltitudes are complex and difficult to measure experimentally. For this reason, the doses are estimated via computer codes that take into account flight parameters like aircraft location and altitude, and solar activity. It is generally accepted, that these calculations should be periodically verified by measurements. Precisemeasurements with tissue equivalent proportional counters are typically short-term only as these detectors are bulky and have only limited battery life. For long-term measurements, which are needed to cover the whole 11-year solar cycle, the silicon spectrometer Liulin is better suited. Liulin is an active dosimeter which records energy deposition events occurring in the semiconductor unit, and – if appropriately calibrated – it estimates neutron and non-neutron component of the ambient dose equivalent. This paper presents a database of long-term measurements performed on board aircraft with the Liulin detector. The measurements started in 2001. For one run, Liulin was placed in the cabin of a Czech Airlines aircraft for approximately 50 days. So far 28 runs were performed, i. e. about 3 500 flights and almost 20 000 flight hours. Flights were flown from Prague to destinations with vertical cut-off rigidities ranging from 1 GV to 17 GV. The most frequent were transatlantic flights from Prague to New York and to Canada. The database comprises more than 105 records where each record contains information on: energy deposition spectra, absorbed dose rates and dose equivalent rates measured with Liulin, date and time, geographic coordinates and altitude. The data are available on the Internet and can be used for instance for verification of computational programs routinely used for estimation of aircrew exposure to cosmic radiation.14th International Congress of Radiation Researc

    Similar works