Primordial non-Gaussianity is a potentially powerful discriminant of the
physical mechanisms that generated the cosmological fluctuations observed
today. Any detection of significant non-Gaussianity would thus have profound
implications for our understanding of cosmic structure formation. The large
scale mass distribution in the Universe is a sensitive probe of the nature of
initial conditions. Recent theoretical progress together with rapid
developments in observational techniques will enable us to critically confront
predictions of inflationary scenarios and set constraints as competitive as
those from the Cosmic Microwave Background. In this paper, we review past and
current efforts in the search for primordial non-Gaussianity in the large scale
structure of the Universe.Comment: 24 pages, 10 figures. To appear in the special issue "Testing the
Gaussianity and Statistical Isotropy of the Universe" of Advances in
Astronom