Simulation of SVPWM Based Multivariable Control Method for a DFIG Wind Energy System

Abstract

This paper deals with a variable speed device toproduce electrical energy on a power network based on adoubly-fed induction machine used in generating mode(DFIG) in wind energy system by using SVPWM powertransfer matrix. This paper presents a modeling and controlapproach which uses instantaneous real and reactive powerinstead of dq components of currents in a vector controlscheme. The main features of the proposed model comparedto conventional models in the dq frame of reference arerobustness and simplicity of realization. The sequential loopclosing technique is adopted to design a multivariable controlsystem including six compensators for a DFIG wind energysystem to capture the maximum wind power and to inject therequired reactive power to the generator. In this paperSVPWM method is used for better controlling of converters.It also provides fault ride through method to protect theconverter during a fault. The time-domain simulation of thestudy system is presented by using MATLAB Simulink to testthe system robustness, to validate the proposed model and toshow the enhanced tracking capability

    Similar works