research

Infinite products of nonnegative 2×22\times2 matrices by nonnegative vectors

Abstract

Given a finite set {M0,,Md1}\{M_0,\dots,M_{d-1}\} of nonnegative 2×22\times 2 matrices and a nonnegative column-vector VV, we associate to each (ωn){0,,d1}N(\omega_n)\in\{0,\dots,d-1\}^\mathbb N the sequence of the column-vectors Mω1MωnVMω1MωnV\displaystyle{M_{\omega_1}\dots M_{\omega_n}V\over\Vert M_{\omega_1}\dots M_{\omega_n}V\Vert}. We give the necessary and sufficient condition on the matrices MkM_k and the vector VV for this sequence to converge for all \hbox{(ωn){0,,d1}N(\omega_n)\in\{0,\dots,d-1\}^\mathbb N} such that $\forall n,\ M_{\omega_1}\dots M_{\omega_n}V\ne\begin{pmatrix}0\\0\end{pmatrix}$.Comment: 8 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/11/2016