We construct static codimension-two branes in any odd dimension D, with
negative cosmological constant, and show that they are exact solutions of
Chern-Simons (super)gravity theory for (super)AdS coupled to external sources.
The stability of these solutions is analyzed by counting the number of
preserved supersymmetries. It is shown that static massive (D-3)-branes are
unstable unless some suitable gauge fields are added and the brane is extremal.
In particular, in three dimensions, a 0-brane is recognized as the negative
mass counterpart of the BTZ black hole. For these 0-branes, we write explicitly
electromagnetically charged BPS states with various number of preserved
supersymmetries within the OSp(p|2) x OSp(q|2) supergroups. In five dimensions,
we prove that stable 2-branes with electromagnetic charge always exist for the
generic supergroup SU(2,2|N), where N is different than 4. For the special case
N=4, in which the CS supergravity requires the addition of a nontrivial gauge
field configuration in order to preserve maximal number of degrees of freedom,
we show for two different static 2-branes that they are BPS states (one of
which is the ground state), and from the corresponding algebra of charges we
show that the energy is bounded from below. In higher dimensions, our results
admit a straightforward generalization, although there are presumably more
solutions corresponding to different intersections of the elementary objects.Comment: 43 pages, revtex4.cls; v2: slight amendments and references added to
match published versio