Abstract

We determined the silicon abundances of 253 metal-poor stars in the metallicity range 4<[Fe/H]<1.5-4<\mathrm{[Fe/H]} <-1.5, based on non-local thermodynamic equilibrium (NLTE) line formation calculations of neutral silicon and high-resolution spectra obtained with VLT-UT2/UVES. The TeffT_{\mathrm{eff}} dependence of [Si/Fe] noticed in previous investigation is diminished in our abundance analysis due to the inclusion of NLTE effects. An increasing slope of [Si/Fe] towards decreasing metallicity is present in our results, in agreement with Galactic chemical evolution models. The small intrinsic scatter of [Si/Fe] in our sample may imply that these stars formed in a region where the yields of type II supernovae were mixed into a large volume, or that the formation of these stars was strongly clustered, even if the ISM was enriched by single SNa II in a small mixing volume. We identified two dwarfs with [Si/Fe]+1.0\mathrm{[Si/Fe]}\sim +1.0: HE 0131-3953, and HE 1430-1123. These main-sequence turnoff stars are also carbon-enhanced. They might have been pre-enriched by sub-luminous supernovae.Comment: 12 pages, 9 figures, 1 electronical table. Accepted by A &

    Similar works