A challenging problem in estimating high-dimensional graphical models is to
choose the regularization parameter in a data-dependent way. The standard
techniques include K-fold cross-validation (K-CV), Akaike information
criterion (AIC), and Bayesian information criterion (BIC). Though these methods
work well for low-dimensional problems, they are not suitable in high
dimensional settings. In this paper, we present StARS: a new stability-based
method for choosing the regularization parameter in high dimensional inference
for undirected graphs. The method has a clear interpretation: we use the least
amount of regularization that simultaneously makes a graph sparse and
replicable under random sampling. This interpretation requires essentially no
conditions. Under mild conditions, we show that StARS is partially sparsistent
in terms of graph estimation: i.e. with high probability, all the true edges
will be included in the selected model even when the graph size diverges with
the sample size. Empirically, the performance of StARS is compared with the
state-of-the-art model selection procedures, including K-CV, AIC, and BIC, on
both synthetic data and a real microarray dataset. StARS outperforms all these
competing procedures