The Clouds of Venus in a Global Context

Abstract

The two defining characteristics of the planet Venus are its atmospheric super-rotation and the planet-enshrouding cloud layers. The clouds reflect more than 70% of the incident solar flux back into space, but about half of the solar flux that is received by the planet is absorbed at the altitudes occupied by the clouds. But for its massive greenhouse effect, the planet Venus would be even cooler than Earth, despite being located closer to the Sun. The clouds play a pivotal role here, too, as they are the fourth largest contributor to this greenhouse effect, following CO2, H2O, and SO2. Thus, a large fraction of the incident solar flux and a significant fraction of the upwelling infrared flux are absorbed by the Venusian cloud layers. This energy deposition possibly plays a significant role in sustaining the global super-rotation of Venus in which the entire atmosphere circles the planet with periods of as little as four days at the cloud tops. However, these clouds are also highly variable, especially when viewed at ultraviolet and near infrared wavelengths. In this talk, I discuss the value of multispectral analysis of Venus in characterizing the properties of the planet’s clouds and their role in the global energy and momentum budgets; especially when coupled with in situ measurements of the clouds themselves.https://commons.und.edu/ss-colloquium/1051/thumbnail.jp

    Similar works