Fuzzy Logic Based Segmentation for Myanmar Continuous Speech Recognition System

Abstract

Speech recognition is one of the next generation technologies for human-computer interaction. Automatic Speech Recognition (ASR) is a technology that allows a computer to recognize the words spoken by a person through telephone, microphone or other devices. The various stages of the speech recognition system are pre-processing, segmentation of speech signal, feature extraction of speech and recognition of word. Among many speech recognition systems, continuous speech recognition system is very important and most popular system. This paper proposes the time-domain features and frequency-domain features based on fuzzy knowledge for continuous speech segmentation task via a nonlinear speech analysis. Short-time Energy and Zero-crossing Rate are time-domain features, and Spectral Centroid is frequency-domain feature that the system will calculate in each point of speech signal in order to exploit relevant information for generating the significant segments. Fuzzy Logic technique will be used not only to fuzzify the calculated features into three complementary sets namely: low, middle, high but also to perform a matching phase using a set of fuzzy rules. The output of the Fuzzy Logic are phonemes, syllables and disyllables of Myanmar Language. The result of the system will recognize the continuous words of input speech

    Similar works