Exploring novel arterio-venous graft designs to reduce vascular access failure risk

Abstract

Although arterio-venous grafts (AVGs) are the second best option as permanent vascular access for hemodialysis, this solution is still affected by a relevant failure rate associated with neointimal hyperplasia (IH), mainly located at the venous anastomosis, where abnormal hemodynamics occurs. In this study we use computational fluid dynamics (CFD) to investigate the impact of six innovative AVG designs on reducing the IH risk at the distal anastomosis in AVGs. Findings from simulations clearly show that using a helical shaped flow divider located in the venous side of the graft could assure a reduced hemodynamic risk of failure at the distal anastomosis, with a clinically irrelevant increase in pressure drop over the graft

    Similar works